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A M E C H A N I C A L  M O D E L  O F  T H E  M O T I O N  O F  A 

L I M I T E D  V O L U M E  O F  L I Q U I D  O N  A D R Y  I N C L I N E D  

P L A N E  

M. I. Abu-Halava and M. T. Gladyshev UDC 532.5:627 

W e  inves t igate  a n e w  m e c h a n i c a l  m o d e l  o / t h e  m o t i o n  o / a n  ou tburs t  wave  on  a dry  slope.  

An overview of the works done by one of the present authors on an outburst wave is given in [1 ]. One of 

the models for the motion of a limited volume of liquid on a dry river bed is proposed in [2, 3 ]. In particular, St. 

Venant's model, while taking friction into account, "freezes" the trailing edge [1 ] in contradiction with the physics 

of the phenomenon. In contrast with the approach based on the solution of the St. Venant equations, we consider 

a model that makes it possible to take into consideration some factors that are not taken into account in the St. 

Venant model. 

1. Description of the Model. A limited volume of incompressible homogeneous liquid is characterized in the 

model by two parameters that specify the shape of the volume. Motion is described by the velocity with which its 

center of gravity moves and by the change in the parameters of the shape. In this case the following factors are 

taken into account: the action of the gravitational force, relative motion within the outburst wave, turbulent friction 

against the slope, the lift force, and the resistance of the surrounding air. In composing the system of equations it 

is assumed for simplicity that the slope has a constant angle of inclination to the horizon in the direction across 

the motion. This allows one to neglect the lateral velocity and to consider the phenomenon to be plane. The limited 

volume of the liquid is considered per unit length of its front and is quantitatively equal to the area of the cross 

section perpendicular to the front. This cross section is assumed to have the form of an ellipse that is somewhat 

deformed in motion. This makes it possible to prescribe the shape and dimensions of the outburst wave by just two 

parameters, for example, the lengths of the semiaxes of the ellipse or its height and area. We will take the latter 

for what follows. 

Thus the motion of a limited volume of liquid is represented not by a model of a continuous medium, but 
by a mechanical model with a finite number of degrees of freedom. At the same time this motion is described not 

by the displacement of a material point, but by adding the degrees of freedom to describe the deformation of the 

outburst wave. 

For the change in the height of the outburst wave and the velocity of its center of gravity we propose the 

following system of ordinary differential equations: 

d M  
= o, (i) 

dt 

1 d (My)  = M g  sin ct - 2pk lv  2 - -~ c .  PahV 2 
dt  

(2) 

(3) 
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Fig. 1. Scheme of the disposition of the limited volume of liquid on the slope. 

The scheme of the disposition of the limited volume of liquid on the slope is given in Fig. 1. 

Equation (1) gives the mass-conservation law of the outburst wave, i.e., S -- const at p = const; Eq. (2) 

shows its momentum M v  acquired under the effect of gravity, friction against the slope, and air resistance, while 

Eq. (3) is the Lagrange equation for motion relative to the center of gravity. 

We shall give the specific form of the formulas adopted to calculate the terms T and Q. To calculate the 

kinetic energy T of internal motion, the following law of the distribution of velocities within the limited volume of 

liquid was adopted: Vx ** ( x / l ) ' l ,  Vy ~ ( y / h ) h ,  which ensures that the following conditions will be satisfied on the 

boundary: Vx - ( x  - +_l) - +.'l, Vy (y  - h) ** "h. With the law of motion taken in this form, the kinetic energy of the 

deformation of the outburst wave turns out to be equal to T ~ ( I / 8 )M(h  2 + ~2). Considering that l and h are 

interrelated as S ** ~r/.h/2, we finally obtain 

T = g M 1 + 2 h 4  ) 

The generalized force Q is calculated as the work AA of all the external forces done to deform the ellipse Ah, Q = 

A A /  Ah .  

The acting forces are the force of gravity and the distribution of pressure on the free boundary of the 

limited volume of liquid. The gravitational force tends to displace its center of gravity downward, i.e., to flatten the 

ellipse. The distribution of pressure over the surface of the ellipse in the counterflow of air is such that it tends to 

extend the upper boundary of the limited volume of liquid upward (lift force). Thus these forces act in opposition. 

Their resultant value turns out to be equal to 

Q = - - ~  1 -  M g  cos  a + ~ P a h v  . (5 )  

Since the flow past the outburst wave will not be separationless, as was assumed when the latter formula was 

derived, we introduce a certain coefficient, taken equal to 0.7, into the expression for the lift force. Moreover, in 

the first term in (5) we neglect the ratio p a / p  compared to 1, since the densities p and Pa are constant and the 

value of p a / p  is small. 
Now, taking into account these remarks, we substitute (4) and (5) into system (1)-(3). We write it in terms 

of dimensionless variables. For this purpose, we select a certain scale L to determine length; then, it is natural to 
take ~ to measure velocity and ~ to find the time. As the scale for measuring density we will take a certain 

p. ,  for example, the density of air. To denote the dimensionless values of the parameters, we use the same symbols 

with a bar. For convenience S will be replaced by S -- S / : r  = h l, and then l = S / h .  Finally, we denote d h / d t  = w. 

This is done for all the equations to be of first order in the system. Thus, we have the formulas 
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For the quantities with a bar, which is dropped, the following system is obtained: 

2 
dv 4k v c. Pa h 2 dh 
d ' - - /=s ina  ~r h S p ' d t  - w ,  

dw 4 ( 1 S 2  2 4 atpa } 
- S ----------~ [2 h 5 w - - -  cos a + 0.7 hv 2 . 

dt 1 +--~  3st Sp 

(6) 

System (6) was investigated analytically and numerically on a computer.  

2. Sta t ionary Solution. It is seen that system (6) has a s tat ionary singular point, i.e., the r ight -hand sides 

of all three equations of system (6) can vanish simultaneously. Physically this means that there  is motion of a 

l imited volume of liquid with the cen te r  of gravi ty moving with cons tan t  velocity a n d  with the  d imensions  

nonvariable. Th e  parameters of this s tat ionary motion obey the following requirements:  

2 
4k v c. Pa 4 ~tpa hv 2 

w = O, sin a ~r h Sp hv2 = O, ~ -  cos ct - 0.7 -ffp-p = O. (7) 

When Eqs. (7) are satisfied, s tat ionary motion occurs. The  s tat ionary values of h and v have the form 

l_L6 s_e d 
k cos a 0.7 sin a - ~ c.  cos a 

2 3:t2 Pa 4 COS a p S  an" 
h . =  4 , v . =  3,~ Pa 0.49k 

0.7 sin a - - -  cos a 3~ 2 c.  

It is seen  tha t  S a n d  P/Pa can take a n y  values here ,  it is on ly  neces sa ry  that  the  inequal i ty  2.1~t 2 t a n h  

a - 4c. > 0 be valid. A denser  liquid of the same limited volume has a higher  s ta t ionary height. Th e  effect of the 

other  parameters  is similar. Thus ,  in the three-dimensional  phase space h, v, w the singular s ta t ionary point has 

the coordinates h - h, ,  v = v., w = 0. Investigation of the approximate form of the integral curves near  this s ingular  

point shows that  it is a focus-saddle. The re  is a separating surface in h, v, w space that consists of integral curves 

entering the singular point. The  states that are  represented by the points of this surface tend to s ta t ionary motion. 

With any  small deviation of the initial state h0, v0, w0 from this surface the integral curve withdraws f rom the 

singular point. Thus ,  the stat ionary point is unstable. 

3. Nonsta t ionary  Motion of  the Outburst  Wave. The  space of the initial data  ho, v0, )4o is divided into two 

regions by the surface of s tat ionary solutions. On all the integral curves that  have their  origin in one  region there  

is a rapid increase in the value of h. On the integral curves that originate in the second region, h tends to zero, 

indicating flattening of the limited volume of liquid and a decrease in the  rate  of displacement of its cen ter  of 

gravity. 

In computer  calculations of system (6) the following parameters  were taken: k = 0.02, P/Pa = 20, S = 10. 

For  a constant angle of the slope of 37 and 20 ° the curve of the intersection of the separating surface with 

the plane w = 0 was found. The  states leading to an increase in the height of the limited volume of liquid lie above 

the indicated curves, and those leading to its flattening lie below these curves. 

Calculation of the motion of the outburst  wave on a slope of constant  or piecewise-constant steepness f rom 

the initial state ho, v0, w0 = 0 and its deceleration on a horizontal portion was performed.  Th e  main difficulty resides 

in the selection of coefficients that show their  effect and the effect of the initial data on the behavior of the integral 
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Fig. 2. Division of the plane of initial data into two regions: 1) flattening of 

the limited volume of Hquid, 2) increase of its height. 

Fig. 3. Deceleration of the limited volume of liquid on a horizontal portion. 

curves. The initial parameters in dimensionless variables were varied within the ranges ho = 1 -15 ,  vo -- 0 - 1 3 ,  w0 

m 0. The angle of the slope is 37 °. The aerodynamic-drag factor is taken to be equal to 1. 

The following facts were noted in the investigated ranges of the indicated quantities. Depending on the 

initial values h0 and v0 (see Fig. 2) the integral curves fall into two groups. An increase in the value of h is observed 

for a curve of the first group. The length of the outburst wave decreases in this case; the wave extends upward and 

hardly retains its elliptic shape in real motion. Therefore, it would be unreasonable to use the suggested equations 

further. Other models are needed to study such waves. 

In the second group of integral curves the value of h decreases. The length of the outburst wave increases 

in this ease. 

In both eases the rate of displacement of the leading front of the limited volume of liquid, which differs 

from v by the quantity 1 because of its spreading over the slope, was calculated. It is equal to v - (S/h2)h. 

4. Motion of the Outburst Wave on a Horizontal Plane. The behavior of all the parameters of the limited 

volume of liquid was calculated for the case where the volume reached a horizontal portion of the slope after motion 

down an inclined plane. For this purpose the results of the previous calculations at a --'20 ° were taken as the initial 

data at t --- 5. In all the calculations the rate of motion of the center of gravity of the outburst wave v decreases with 

time, while its height h both decreases and increases with time. Therefore the velocity of the leading edge v + 

both exceeds v and is less than v. The integral curves h(t) and v(t) are depicted in Fig. 3 for 0 _< t _< 2. 

We note in conclusion that the present approach can be extended to the motion of a limited volume of a 

wa te r - a i r  mixture when either inflow or outflow of air occurs and to the two-dimensional problem if the limited 

volume of liquid is an ellipsoid. It is possible to create a model of the motion of an outburst wave under conditions 

where the slope, on which it propagates, itself moves with a prescribed velocity. In this case the equations are 

supplemented with a number of terms in connection with conversion to a moving coordinate system. 

N O T A T I O N  

M, S, p, mass, area, and density of the limited volume of liquid; v, rate of displacement of the center of 

gravity; h, l, linear dimensions of the ellipse (h is the semiaxis normal to the slope, 1 is the semiaxis along the 

slope); Pa, density of the surrounding air; k, coefficient of turbulent friction against the slope; c., aerodynamic-drag 

factor; g, free-fall acceleration; a,  angle of the slope; T, kinetic energy of the relative motion of the liquid in the 

interior of the limited volume; Q, resultant force;/~, l, rates of deformation of the boundary of the ellipse at the 

corresponding points; A t ,  work done by all external forces to deform the ellipse; L, scale for measuring length; w 

= dh /d t ;  t, time; p . ,  scale for measuring density; x, coordinate along the slope; y, coordinate perpendicular to the 

slope; Vx, Vy, components of the velocity of the liquid along the x and y axes; bar, "dimensionless values of the 

parameters; two bars, normalization of the area. 
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